Practice

- people do whatever PDG recommends
- people do whatever they consider "traditional"
- people do whatever they have a software package for

How to fix this if we want to?

- perhaps PDG should emphasize that there are many methods...
- make software packages publicly available \improx include in CERN libraries?
- many analyses use likelihood/ χ^2 fits instead of event counting \Longrightarrow pay more attention to these methods!!!

Rare B searches in CLEO

$$\mathcal{L}(s,b) = \frac{e^{-(s+b)}}{N!} \prod_{i=1}^{N} (s\mathcal{S}_i + b\mathcal{B}_i)$$

$$\mathcal{L}(s) = \int_0^\infty \mathcal{L}(s,b) db$$

$$1 - \alpha = \frac{\int_0^{s_0} \mathcal{L}(s) ds}{\int_0^\infty \mathcal{L}(s) ds}$$

Figure 1: Example of a likelihood fit.

$\mathcal{L}(s,b) = f(\vec{x} s,b)$ $\mathcal{L}(s) = f(\vec{x} s)$ $s,b) = \frac{f(s,b \vec{x})f(\vec{x})}{f(s,b)}$ $f(s,b) = f(s)f(b)$	complete form $\mathcal{L}(s) = \int_0^\infty \mathcal{L}(s,b) f(b) db$ $1 - \alpha = \int_0^{s_0} \mathcal{L}(s) f(s) ds / \int_0^\infty \mathcal{L}(s) f(s) ds$
$\mathcal{L}(s,b)$ $\mathcal{L}(s)$ $\mathcal{L}(s,b) = f(s,b)$	rare B searches (CLEO) $\mathcal{L}(s) = \int_0^\infty \mathcal{L}(s,b)db$ $1 - \alpha = \int_0^{s_0} \mathcal{L}(s)ds/\int_0^\infty \mathcal{L}(s)ds$ implicitly uses Bayesian approach with flat prior

Bayesian Methods

$$\pi(s|n) = \frac{f(n|s)\pi(s)}{\int_0^\infty f(n|s)\pi(s)ds}$$

$$1 - \alpha = \int_0^{s_0} \pi(s|n) ds$$

$$f(n|s) = e^{-s}s^n/n!$$
 $f(n|s) = e^{-(s+b)}(s+b)^n/n!$

Non-informative Priors

flat Bayes & Laplace flat

 $1/\sqrt{s}$ Box & Tiao $1/\sqrt{s+b}$

1/s Jeffreys & Jaynes 1/(s+b)

$$\pi(s) \propto \frac{1}{(s+b)^m}$$
; $m = 0, 0.5, 1$

$$1-lpha=1-rac{\Gamma(n-m+1,s_0+b)}{\Gamma(n-m+1,b)}$$

Frequentist Likelihood Method

$$\mathcal{L}(s,b) = \frac{e^{-(s+b)}}{N!} \prod_{i=1}^{N} (s\mathcal{S}_i + b\mathcal{B}_i)$$

Assume confidence interval of the form $(0, s_0)$.

- fit data to extract $\hat{s} = s_{obs}$ and $\hat{b} = b_{obs}$
- assume signal rate s_0
- generate many toy MC experiments

$$f(s) = e^{-s_0} \frac{s_0^s}{s!}; \quad f(b) = e^{-b_{obs}} \frac{b_{obs}^b}{b!}; \quad N = s + b$$

ullet fit every MC sample to extract \hat{s} and \hat{b}

$$1 - \alpha = \frac{N_{exp}(\hat{s} > s_{obs})}{N_{exp}(total)}$$

$$1 - \alpha = 1 - \sum_{k=0}^{n} e^{-(s_0 + b)} \frac{(s_0 + b)^k}{k!}$$

Search for $\tau \to \mu \gamma$, CLEO 1999

Method	UL at 90% CL
Bayesian with flat prior	5.76
Bayesian $1/\sqrt{s+b}$	5.32
Bayesian $1/(s+b)$	4.92
classical	5.03
classical, based on stat. signif.	4.68
integration of likelihood	6.67
Monte Carlo likelihood technique	3.85
Feldman & Cousins	~ 6.0